AEROLOGICAL OBSERVATIONS [The Aerological Division, W. R. Gregg in charge] By L. T. SAMUELS Free-air temperatures during the month averaged mostly above normal at the northern stations and below normal at the southern stations. The largest positive departures occurred at Ellendale and Omaha. Negative departures at the southern stations were small in practically all cases, the largest values occurring at San Diego. Relative humidity departures were of opposite sign to those of temperature at the southern stations and at Omaha but were mostly of the same sign as those for temperature at the other northern stations. The largest positive departures occurred at Dallas. Resultant free-air wind velocity, particularly at the southern stations, averaged in general below normal during the month. Resultant directions had in most cases a greater southerly component than normal at the northern stations and a greater than normal northerly component at the southern stations. Airplane observations were made at the four Weather Bureau stations on every day during the month and averaged above 5,000 meters at all stations. The highest single flight reached 6,421 meters at Omaha on the 1st. Kite flying was permanently discontinued at the close of the month at Due West incidental to the closing of this station in June. Table 1.—Free-air temperatures, and relative humidities, during May, 1932 #### TEMPERATURE (° C.) | | Chicago, Ill.
(190 meters) ¹ | | Cleveland,
Ohio
(245 meters) ¹ | | Dallas, Tex.
(149 meters) ² | | Due West,
S. C.
(217 meters) | | Ellendale,
N. Dak,
(444 meters) | | Hampton
Roads, Va.
(2 meters) | | Omaha,
Nebr.
(299 meters) 4 | | Pensacola,
Fla.
(2 meters) ³ | | San Diego,
Calif.
(9 meters) ³ | | Washington
D. C.
(2 meters) | | |----------------------------|--|--|--|--|--|--|---|--|---|--|---|----------------------------------|--|--|---|----------------------------------|---|--------------------------------------|--|----------------------------------| | Altitude (meters) m. s. l. | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | Меал | Depar-
ture
from
normal | Mean | Departure
from
normal | Mean | Departure from normal | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | Mean | Depar-
ture
from
normal | | Surface | 11. 9
13. 6
12. 4
9. 6
6. 7
3. 8
0. 8
-5. 0 | +0.2
+2.1
+2.1
+1.7
+1.2
+0.8
+0.7
+0.1 | 10. 5
12. 5
11. 6
8. 6
5. 7
2. 8
0. 1
-6. 3 | -0.9
+1.3
+1.1
+0.7
+0.2
+0.1
-0.6
-1.4 | 17. 8
19. 8
18. 1
15. 0
11. 8
9. 1
6. 5
0. 1
-6. 8 | +0.7
+1.5
+0.3
-0.5
-0.5
-0.1
-0.3
-1.5 | 19. 7
17. 1
14. 3
11. 2
8. 4
5. 6
2. 8
-3. 0
-10. 4 | -0.5
-0.6
-0.5
-0.5
-0.4
-0.4
-0.2
+0.1 | 14. 1
13. 7
11. 2
9. 0
6. 5
3. 8
1. 0
-4. 6
-9. 4 | +1.0
+1.0
+1.7
+2.4
+2.9
+3.1
+3.1
+3.4
+4.7 | 17. 5
16. 0
14. 2
8. 1
3. 1 | -1. 2
-1. 9
-1. 5
-1. 8 | 13. 4
14. 1
14. 5
12. 5
10. 0
7. 0
3. 9
-3. 3
-10. 4 | -1.0
+2.5
+3.3
+3.4
+3.1
+2.9
+1.5 | 21. 3
20. 1
17. 2
12. 1
7. 1 | -1. 2
-0. 4
-0. 6
-0. 3 | 17. 3
12. 6
12. 8
9. 0 | -1.3
-2.1
-1.6
-2.6
-0.9 | 15. 5
15. 2
14. 2
9. 6
4. 0
-1. 4 | | | | | 1 | 1 | 1 | | RE | <u> </u> | | <u> </u> | (PER | CENT | F) | H | | 11 | | | | | | | Surface | 74
64
58
58 | -1
-6
-4 | 83
71
64
64 | +6
0
+2 | 86
73
69
68 | 0
0
+10 | 69
69
68
65 | +4
+4
+4
+1 | 68
68
65
64 | +8
+8
+6
+4 | 72
68
63 | +3
+9
+9 | 78
72
63
60 | +8
+1
-2 | 80
74
68 | +1
+1
+3 | 72
82
65 | +4
+6
+5 | 69
60
51 | +5
+1
-5 | |----------------|----------------------|----------------|----------------------|----------------|----------------------|---------------|----------------------|----------------------|----------------------|----------------------|----------------|----------------|----------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------| | 2,000 | 55 | - <u>3</u> | 63 | +5 | 67 | +18
+16 | 61
56 | -1
-3 | 64
64 | +4 | 61 | +10 | 57
56 | -3 | 58 | +6 | 52 | +16 | 51 | -5 | | 3,000
4,000 | 56
51 | +8
+6 | 57
51 | +8
+9
+6 | 55
48 | +10
+2 | 50
44 | -5
-8 | 66
67 | +3
+9
+14 | 57 | +5 | 54
51 | -2
-4
-8 | 52 | +11 | 35 | +9 | 51
43 | -1
-6 | | 5,000 | 46 | +2 | 46 | +2 | 45 | -8 | 38 | -12 | 66 | +15 | | | 47 | -15 | | | | | | | Normals for Royal Center, Ind., used; surface departures omitted because of difference in time between current airplane observations and those of kites at Royal Center, Ind. Temperature departures based on normals determined by interpolating between those of Groesbeck, Tex., and Broken Arrow, Okla. Naval air stations. Humidity departures based on normals of Groesbeck, Tex. Surface departures omitted because of difference in time of current airplane observations and those of kites at Groesbeck and Broken Arrow. Table 2.—Free-air resultant winds (meters per second) based on pilot balloon observations made near 7 a.m. (E. S. T.) during May, 1932 [Wind from N=360; E=90, etc.] | Altitude (meters) | Albuquer-
que, N.
Mex. (1,528
meters) | | Bismarck,
N. Dak.
(518 meters) | | Browns-
ville, Tex.
(12 meters) | | Burlington,
Vt. (132
meters) | | Cheyenne,
Wyo. (1,873
meters) | | Chicago,
Ill. (198
meters) | | Cleveland,
Ohio (245
meters) | | Dallas,
Tex. (154
meters) | | Due West,
S. C. (217
meters) | | Havre,
Mont. (762
meters) | | Jackson-
ville, Fla.
(14 meters) | | Key
Fla.
met | (11 | |-------------------|--|--|--------------------------------------|--|---------------------------------------|--|--|--|--|--|---|--|---|---|---|---|---|--|---|--|--|--|--|---| | m. š. l. | Direction | Velocity | Surface | 204
260
256
245
235 | 0.8
0.5
2.6
4.1
6.5
8.7 | 135
208
253 | 1. 5
1. 0
1. 7
1. 9
4. 5
6. 0
7. 6 | 145
141
151
160 | 2. 1
7. 6
6. 2
3. 7
0. 7
1. 3
3. 2
5. 5
9. 6 | 193
236
291
307
313
308
304
308 | 1.9
3.0
4.0
6.8
7.3
7.5
6.3
4.2 | 291
273
262
272
283
275 | 2. 7
3. 3
4. 4
5. 3
5. 0
5. 6 | 254
241
254
265
256
275
273 | 1. 6
6. 0
5. 3
5. 5
5. 3
4. 2
3. 7 | 180
233
271
275
277
291
282
296
311 | 1. 3
3. 2
4. 3
5. 5
6. 2
6. 4
8. 2
8. 5
10. 8 | 105
147
175
201
247
328
341
329
330 | 0.6
4.4
4.6
3.9
1.8
2.0
2.8
3.8
6.0 | 25
50
325
294
269
277
292
291
278 | 1. 0
0. 9
1. 7
1. 4
2. 1
2. 7
3. 5
3. 7
4. 5 | 219
269
284
278
261
263
258 | 0. 5
1. 7
2. 7
3. 9
4. 8
5. 5
7. 9
9. 2 | 111
57
160
191
238
256
138
279
253 | 0. 1
0. 7
0. 6
1. 3
1. 2
0. 9
0. 5
1. 6
4. 9 | 93
101
135
195
204
214
219
270
352 | 1.5
3.1
2.4
1.6
2.3
3.2
2.4
3.7
3.6 | Normals for Drexel, Nebr., used; surface departures omitted because of difference in time between current airplane observations and those of kites at Drexel, Nebr. Table 2.—Free-air resultant winds (meters per second) based on pilot balloon observations made near 7 a. m. (E. S. T.) during May, 1932.—Continued [Wind from N=360; E=90, etc.] | | Los Angeles, Calif. (217 meters) | | es, Calif. Oreg. (410 | | Memphis,
Tenn. (85
meters) | | New Or-
leans, La.
(25 meters) | | Oakland,
Calif. (8
meters) | | Oklahoma
City, Okla.
(402 meters) | | Omaha,
Nebr. (299
meters) | | Phoenix,
Ariz. (356
meters) | | Salt Lak
City, Uta
(1,294
meters) | | Sault Ste.
Marie,
Mich. (198
meters) | | Week (14 | | Was
ton,
(10 m | hing-
D. C.
eters) | |---------|--|-------------------------------------|-----------------------------|-------------------------------------|----------------------------------|---|--|--|---|----------------------------|---|---|--|---|-----------------------------------|---|--|------------------------------|---|--|---|---|----------------------|---| | Surface | o
108
107
357
291
289
258
294 | 0.66
1.29
2.89
2.84
4.1 | 000 303 318 199 257 269 279 | 0.48
0.99
0.14
3.59
6.1 | 78 129 240 258 256 282 331 341 | 0.4
1.8
1.5
2.5
1.6
1.7
5.5 | 55
106
132
200
332
310
286 | 1. 4
3. 4
1. 0
0. 6
1. 2
0. 9
0. 8
3. 4 | 239
268
319
321
311
319
322 | Velocity Velocity Velocity | 167 | 2.3
3.8
6.3
5.0
3.6
2.4
2.9 | 0 146
197
235
252
261
272
284
275 | 1.8
4.2
6.8
6.0
6.0
7.1
6.7 | | 1. 6
4. 2. 4
1. 8
2. 2
4. 2
6. 7 | | 2. 6
3. 9
4. 8
4. 8 | 229
271 | 0.66
0.78
3.88
5.66
6.42
13.6 | 0 161
243
219
212
240
229
236 | 0.5
0.2
1.2
1.7
1.4
3.3
4.8 | | 1.07
3.07
4.44
6.43
7.38
5.8 | # RIVERS AND FLOODS By MONTROSE W. HAYES [In charge River and Flood Division] In May there were floods of minor importance in the Potomac, James, and Savannah Rivers along the Atlantic slope, the Barren, Green, and Pigeon Rivers in the Ohio Basin and in some of the rivers of New Mexico, Idaho, and Washington. There was a moderate flood in the Colorado River, caused by melting snow; it did not cause any loss of consequence. Heavy rains in Nebraska on the night of the 6th-7th caused a flood in the Elkhorn River, a small tributary to the Platte. No flood service is maintained on the Elkhorn. Table of flood stages in May, 1932 [All dates in May unless otherwise specified] | Diagram and station | Flood | Above
stages | | | Crest | |---|------------------------|--|----------------------|---------------------------------|----------------------| | River and station | stage | From— | To- | Stage | Date | | ATLANTIC SLOPE DEAINAGE | | | | | | | Potomac: Harpers Ferry, W. Va Sycamore Island, Md Jumes: Columbia, Va | Feet
18
10
10 | 13
13
3 | 14
15
4 | Fect
20. 0
14. 6
13. 9 | 13
14
3
13 | | Savannah: Ellenton, S. C | 14 | 12
4 | 15
5 | 12. 2
15. 3 | 10
5 | | MISSISSIPPI SYSTEM | | | | | | | Ohio Basin | | | | | | | Barren: Bowling Green, Ky
Green: Lock 4, Woodbury, Ky
Pigeon: Newport, Tenn | 20
33
6 | I
1
1 | 2
2
1 | 23. 0
34. 6
8. 0 | 1
2
1 | | Atchafalaya Basin | | | | | | | Atchafalaya: Atchafalaya, La | 22 | Dec. 27 | 5 | 24. 9 | Mar. 3-5 | | WEST GULF OF MEXICO DRAINAGE | | | | | | | Pecos: Fort Sumner, N. Mex | 5 | 11 | 12 | 5. 5 | 12 | | Rio Grande:
Espanola, N. Mex
San Marcial, N. Mex | 7 7 | 16
22 | 29
28 | 7. 8
7. 3 | 20-22, 24, 25 | | GULF OF CALIFORNIA DRAINAGE | | | | | | | North Fork: Paonia, Colo
Gunnison: Delta, Colo
Green: Elgin, Utah | 9
9
12 | $\left\{\begin{array}{cc} 12 \\ 22 \\ 12 \\ 24 \end{array}\right.$ | 20
22
26
27 | 9. 7
9. 2
10. 2
12. 3 | 13
22
23
27 | | Colorado:
Fruita, Colo
Parker, Ariz | 12
7 | 24
1 | (¹) 24 | 12. 0
12. 0 | 24
30-31 | | PACIFIC SLOPE DRAINAGE | | | | | | | Columbia Basin | | Ì | | | | | Clearwater: Kamiah, Idaho
Columbia: | 12 | 8 | 23 | 15. 6 | 14 | | Marcus, Wash
Vancouver, Wash | 24
15 | 7
10 | (1)
(1) | 31. 8
21. 6 | 27
25 | Continued into June. The passing of the Atchafalaya River below the flood stage on May 5 brought an end to the numerous and serious floods which prevailed in the tributary streams of the lower Mississippi Basin during the preceding five months. ### Statement of flood losses [The losses in the lower Mississippi Basin were in the winter and early spring; the others were in May] # MISSISSIPPI SYSTEM # Missouri Basin-Elkhorn River in Nebraska | Tangible property totally or partially destroyed Prospective crops Livestock and other movable property | \$25, 400
2, 500
1, 100 | |---|------------------------------------| | Ohio Basin-Barren River in Kentucky | | | Prospective crops | 5, 000 | | Lower Mississippi Basin-Tallahatchie and Yazoo
Rivers | | | Tangible property totally or partially destroyed | 750, 000 | | Matured crops | 25, 000
175, 000 | | Atchafalaya Basin | | | Tangible property, totally or partially destroyed Matured crops Prospective crops Livestock and other movable property | 6, 210
1, 725
49, 450
500 | | WEST GULF OF MEXICO DRAINAGE | | | Rio Grande River in New Mexico | | | Tangible property, totally or partially destroyed | 10, 000 | | GULF OF CALIFORNIA DRAINAGE | | | Colorado River | | | Tangible property, totally or partially destroyed | 250 | | Estimated value of property saved by warnings: | | | Barren River in Kentucky Green River in Kentucky | 1, 000
100 | | Tallahatchie and Yazoo Rivers in Mississippi, in the winter and late spring | 50, 000 |